Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chun-Bo Liu, Guang-Bo Che,* Yun-Cheng Cui and Chuan-Bi Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.082$
Data-to-parameter ratio $=24.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[μ-1,4-bis(ethylsulfanyl)butane- $\left.\kappa^{2} S, S^{\prime}\right]$ -di- μ-bromo-mercury(II)]

The title complex, $\left[\mathrm{HgBr}_{2} L\right][L$ is 1,4 -bis(ethylsulfanyl)butane, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}$], has a dinuclear structure in which one L ligand links two HgBr_{2} units. A C_{2} symmetry axis passes through the centre of the ligand L. The $\mathrm{Hg}^{\text {II }}$ centre adopts a slightly distorted trigonal planar geometry coordinated by two Br^{-} anions and one S atom from L. When two weak $\mathrm{Hg}-\mathrm{Br}$ interactions are considered, the dinuclear structure expands into a two-dimensional layer containing $\left[\mathrm{HgBr}_{2}\right]_{n}$ chains, with the $\mathrm{Hg}^{\text {II }}$ ion having a trigonal-bipyramidal geometry and the Br^{-}anion acting as a μ_{2} linkage.

Comment

Ag^{I} complexes of multi-thioether ligands have been the subject of wide investigation, focused mainly on their structures (Black et al., 1995; Bu et al., 2002; Li et al., 2004). It is well known that the S donors of the thioether ligand can coordinate to the $\mathrm{Hg}^{\text {II }}$ ion under general reaction conditions. However, in contrast with the Ag^{I} complexes, $\mathrm{Hg}^{\mathrm{II}}$ complexes with this type of ligand have not been sufficiently exploited (Helm et al., 2003; Noh, 1997). Here, we report the title $\mathrm{Hg}^{\text {II }}$ complex, (I), with a dithioether ligand, 1,4-bis(ethylsulfanyl)butane (L).

(I)

The title complex has a dinuclear structure formed by one L ligand linking two HgBr_{2} units (Fig. 1). There is a C_{2} symmetry axis in the dinuclear molecule passing through the centre of the L ligand. The $\mathrm{Hg}^{\text {II }}$ ion is coordinated by two Br atoms and one S atom from the L ligand, showing a slightly distorted trigonal planar geometry, with the bond angles around $\mathrm{Hg}^{\mathrm{II}}$ in the range $106.51(2)-132.00(2)^{\circ}$ (Table 1). The $\mathrm{Hg}^{\mathrm{II}}$ ion deviates from the $\mathrm{Br} 1 / \mathrm{Br} 2 / \mathrm{S} 1$ plane by 0.1204 (2) \AA. The L ligand acts as a bridging unit linking two $\mathrm{Hg}^{\mathrm{II}}$ ions; the $\mathrm{S}-\mathrm{S}$ and $\mathrm{Hg}-\mathrm{Hg}$ distances are 6.557 (2) and 8.726 (2) \AA, respectively.

It is interesting that each $\mathrm{Hg}^{\text {II }}$ centre is weakly coordinated by two Br^{-}anions of adjacent molecules, with $\mathrm{Hg}-\mathrm{Br}$ distances of 3.157 (2) and 3.212 (3) \AA (Table 1), to form a two-

Received 17 October 2005 Accepted 28 October 2005 Online 5 November 2005

Figure 1
The structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines show weak coordinate bonds. [Symmetry codes: (A) $2-x, y, \frac{1}{2}-z$; (B) $1-x, y, \frac{1}{2}-z$; (C) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.]
dimensional layer containing $\left(\mathrm{HgBr}_{2}\right)_{\mathrm{n}}$ chains. Thus, the $\mathrm{Hg}^{\mathrm{II}}$ centre has a trigonal-bipyramidal coordination geometry and each Br^{-}anion has a μ_{2} bridging coordination mode.

Experimental

1,4-Bis(ethylthio)butane (L) was synthesized according to the literature method of Hartley et al. (1979). The title complex was synthesized by the following procedure. A solution of $\mathrm{HgBr}_{2}(36 \mathrm{mg}$, $0.1 \mathrm{mmol})$ in acetone was added to a chloroform solution of $L(21 \mathrm{mg}$, $0.1 \mathrm{mmol})$. The mixture was stirred for about 10 min and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After one week, colourless single crystals of (I) suitable for X-ray investigation were collected (yield 52%).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{HgBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}\right)\right]} \\
& M_{r}=449.58 \\
& \text { Monoclinic, } C 2 / c \\
& a=10.019(2) \AA \\
& b=12.952(3) \AA \\
& c=14.798(3) \AA \\
& \beta=106.56(3)^{\circ} \\
& V=1840.5(6) \AA^{3} \\
& Z=8
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID

diffractometer

ω scans

Absorption correction: numerical (NUMABS; Higashi, 1995)
$T_{\text {min }}=0.010, T_{\text {max }}=0.045$
7768 measured reflections
$D_{x}=3.245 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6480 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=25.55 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Cube, colourless
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

1804 independent reflections
1422 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.082$
$S=1.06$
1804 reflections
73 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0299 P)^{2}\right. \\
\quad+4.5708 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.93 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Hg1-S1	2.5050 (8)	$\mathrm{Hg} 1-\mathrm{Br} 2^{\text {ii }}$	3.2123 (8)
$\mathrm{Hg} 1-\mathrm{Br} 1$	2.5190 (6)	S1-C2	1.798 (3)
$\mathrm{Hg} 1-\mathrm{Br}^{1}{ }^{\text {i }}$	3.1571 (8)	S1-C3	1.809 (3)
$\mathrm{Hg} 1-\mathrm{Br} 2$	2.5653 (5)		
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 1$	132.00 (2)	$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br} 1^{\mathrm{i}}$	96.67 (2)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 2$	106.51 (2)	$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br} 2^{\text {ii }}$	90.84 (2)
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 2$	120.80 (1)	$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{Br} 2^{\text {ii }}$	170.20 (1)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 1^{1}$	96.02 (3)	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 3$	104.8 (1)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 2^{\text {ii }}$	75.74 (3)	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{Hg} 1$	107.0 (1)
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 1^{\text {i }}$	86.72 (3)	$\mathrm{C} 3-\mathrm{S} 1-\mathrm{Hg} 1$	107.87 (8)
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 2^{\text {ii }}$	94.85 (3)		

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank Jilin Normal University for supporting this work.

References

Black, J. R., Champness, N. R., Levason, W. \& Reid, G. (1995). J. Chem. Soc. Chem. Commun. pp. 1277-1279.
Bu, X.-H., Chen, W., Hou, W.-F., Du, M., Zhang, R.-H. \& Brisse, F. (2002). Inorg. Chem. 41, 3477-3482.
Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. \& McAuliffe, C. A. (1979). Inorg. Chim. Acta, 35, 265-277.

Helm, M. L., VanDerveer, D. G. \& Grant, G. J. (2003). J. Chem. Cryst. 33, 625630.

Higashi, T. (1995). NUMABS. Rigaku Corporation, Tokyo, Japan.
Li, K., Xu, Z. \& Fettinger, J. C. (2004). Inorg. Chem. 43, 8018-8022.
Noh, D.-Y. (1997). Chem. Commun. pp. 2211-2212.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (1998). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

